
Department of Computing

Bachelor of Science (Hons) in Software Development

Creche Connect
Design Document

Supervisor: Chris Meudec
Student Name: Michal Gornicki
Student Number: C00265618
Date: 2022/2023



1

Abstract
The Creche Connect application aims to create a simple and secure platform for childcare
practitioners to track the pupil’s progress and communicate effectively with
parents/guardians about their child’s development.



2

Table of contents

Abstract 1
1. Overview 3
2. System architecture 3

2.1. React 3
2.2. Firebase Authentication 3
2.3. Firebase Cloud Firestore 3
2.4. Firebase Cloud Storage 3

3. Data model 4
3.1. Users 4
3.2. allMessages 4
3.3. userMessages 4
3.4. children 5

4. Sequence Diagrams 5
4.1. Register User 5
4.2. Login User 7
4.3. Connect 7

5. Documentation 9
5.1. Register page 9
5.2. Login page 10
5.3. AuthDetails Component 10
5.4. MessageDetails Component 11
5.5. AddChild Component 12
5.6. ChildDetails Component 13
5.7. DailyReview Component 14

6. References 15



3

1. Overview

The Creche Connect application aims to create a simple and secure platform for childcare
practitioners to track the pupil's progress and communicate effectively with
parents/guardians about their child's development. This design document will explain the
system architecture in detail. In the paragraph Data model, the database details will be
clarified. Documentation paragraph will explain in detail more important components.

2. System architecture

2.1. React
This JavaScript library builds the application's front end. React is responsible for handling
the user interface and interactions, and it makes API calls to Firebase to retrieve and
update data.

2.2. Firebase Authentication
The application uses Firebase Authentication [1] to create and manage user accounts.
When a user registers, Firebase Authentication creates a new user document with their
email and password in the Firebase Authentication service. When the user logs in, Firebase
Authentication verifies their email and password and returns a unique user ID (UID) that
the front end can use to authenticate subsequent requests.

2.3. Firebase Cloud Firestore
The application uses Firebase Cloud Firestore [2] to store user data. Firestore is a NoSQL
document-based database that efficiently stores, retrieves, and syncs data. When a user
registers, the application creates a new user document in the Firestore, with their uid,
name, email and picture url.



4

2.4. Firebase Cloud Storage
The application uses Firebase Cloud Storage [3] to store the user's profile pictures. When a
user uploads an image, the application uploads the picture to the storage bucket and
generates a unique URL, which can then be used to display the picture in the application.

3. Data model
3.1. Users

A collection that contains documents for each registered user. Each user document would
contain the following fields:

● displayName: This is a string containing the user's display name
● email: This string contains the user's email address
● photoURL: This string contains the URL of the user's profile picture
● searchArray: This is an array that contains strings that are used for searching the

user's name in the application. It contains the substrings of the user’s name
● uid: This is a string that contains the unique identifier of the user
● userRole: This is a string that contains the user's role in the application

The profile picture is a storage bucket containing the profile pictures uploaded by users.
Each file would have a unique name based on the user's email and the timestamp when
the file was uploaded.

3.2. allMessages
The allMessages collection contains documents representing different chat conversations,
each with a uniquemessageId. The documents contain an array called messages,
representing the messages in the chat conversation. Each message is an object with
properties such as:

● id: A unique identifier for each message within the conversation.
● text: The message content (text).
● senderId: The ID of the user who sent the message.
● date: A timestamp that represents the date and time the message was sent.
● img: A URL to the image file, if the message includes an image.

3.3. userMessages
The userMessages collection contains documents for each user, where each document has:

● uid: The user's unique ID in Firebase Authentication.



5

● lastMessage: An object representing the last message exchanged between the user
and another user. This object has the following fields:

○ text: The text of the last message.
○ date: The timestamp when the last message was sent.

● messages: An array of objects representing the messages exchanged between the
user and another user.

3.4. children
The children collection contains information about children in the system:

● childId: a unique identifier for the child.
● dob: the date of birth of the child.
● healthInfo: information related to the child's health, including vaccination status

and medicine instructions.
● id: same as childId.
● lowFirstName: the first name of the child in lowercase.
● lowLastName: the last name of the child in lowercase.
● parentEmail: the email address of the parent or guardian of the child.
● parentMobile: the mobile phone number of the parent or guardian of the child.
● parentName: the name of the parent or guardian of the child.
● searchArray: an array of strings that enable a fast search of the child's name.
● additionalInfo: additional information related to the child, including allergies and

sensitivities.
● dailyReviews: an array of objects representing daily reviews for the child. Each

object has properties such as date, mealTime, meals, nappyStatus, nappyTime,
activities, otherComments, updatedBy, and timestamp, which are used to record
information related to the child's daily activities.

● updatedBy: the name of the user who last updated the child's information.

4. Sequence Diagrams
4.1. Register User



6

:auth - Firebase Authentication creates a new user document with their email and
password in the Firebase Authentication service. When the user logs in, Firebase
Authentication verifies their email and password and returns a unique user ID (UID) that
the front end can use to authenticate subsequent requests.

:db - Firebase Realtime Database is a NoSQL cloud-hosted database that stores JSON data
and synchronizes changes instantly across all clients.

:storage - Firebase Storage is a cloud-based file storage service optimized for storing and
serving user-generated content, such as images, videos, and audio files.

User registers for the application by providing the required information. The
createUserWithEmailAndPassword()method creates a user with an email and password.
The result is stored in the response.user. The user's profile picture is uploaded to the
storage. The storage reference is created with the ref()method, the picture is uploaded
with the uploadBytesResumable()method and the downloadURL for the picture is
retrieved with getDownloadURL()method. The user's profile is updated with
updateProfile()method, and the user is created in the Firestore with setDoc()method.



7

4.2. Login User

User logs in to the application by providing the required information. The
signInWithEmailAndPassword()method is called to check the user's credentials. The
navigate()method is called to navigate to the home page.

4.3. Connect



8



9

Component Connect first uses useContext to get the loggedUser from AuthDetails and
data fromMessageDetails. It then retrieves the user's message document from the
database using doc("userMessages", loggedUser.uid) and sets the UserMessages variable
to the result.

The component then creates a new message ID using the createMessageId() function and
saves the UserMessages and AllMessages documents to the database using the set()
method. Next, it loads the messages for the current chat by subscribing to the
onSnapshot()method of the UserMessages document and retrieving the AllMessages
document using the get()method. Finally, it sets the retrieved messages inMessageDetails
using the setMessages()method and sets loading to false.

5. Documentation
5.1. Register page

This component is used to create and update user data in Firebase Authentication and
Firestore and to upload and download profile pictures from Firebase Cloud Storage.

Functions used:

● createUserWithEmailAndPassword(auth, email, password)

A function that creates a new user with the provided email and password using Firebase
Authentication. This function returns a response object that contains the user's unique ID
(uid) and other information about the user, such as their email address and display name.

● updateProfile(user, profile)

A function that updates the user's profile information using Firebase Authentication. This
function takes a user object and an object containing the new profile information, such as
the display name, and updates the user's profile in Firebase Authentication.

● ref(storage, fileName)

A function that generates a reference to a file in Firebase Cloud Storage. This function takes
the storage object and the file name and returns a reference to the file.

● uploadBytesResumable(storageRef, file)

A function that uploads a file to Firebase Cloud Storage. This function refers to the file in
storage and the file to be uploaded.

● getDownloadURL(fileRef)

A function that generates a download URL for a file in Firebase Cloud Storage. This function
takes a reference to the file in storage and returns the download URL.

● doc(db,collection, document)



10

A function that generates a reference to a document in Firebase Cloud Firestore. This
function takes the Firestore object and the collection name, and the document id and
returns a reference to the document.

● setDoc(docRef, data)

A function that creates or updates a document in Firebase Cloud Firestore. This function
takes a reference to the document and the data to be stored in the document.

5.2. Login page
Functions used:

● handleSubmit

This function is called when the form is submitted. It prevents the default form submit
behaviour, gets the email and password values from the form, and attempts to sign in the
user using the signInWithEmailAndPassword function from the Firebase Auth library. If the
sign-in is successful, it navigates the user to the homepage; otherwise, it catches the error
and logs it to the console.

● signInWithEmailAndPassword(auth, email, password)

The Firebase Auth library provides this function. It allows to sign in a user with their email
address and password. It takes in 3 arguments, auth object, email, and password. It returns
a promise, resolved if the sign-in is successful and rejected if there is an error.

● useNavigate

This is a hook provided by the react-router-dom library. It allows programmatically
navigating to a different route in the application.

5.3. AuthDetails Component

The "AuthInfo" module is a component that provides authentication details to its child
components. It creates a context object called "AuthDetails" and sets the "loggedUser"
state value based on the current user's authentication status.

Functions used:

● useEffect

This hook function from the React library performs side effects in a functional component.
It takes two arguments: a function to execute after the component has rendered and an
optional array of dependencies to control when the function should be re-run. In this code,



11

the useEffect hook is used to listen for changes in the user's authentication status and
update the state of the loggedUser variable accordingly.

● useState

This hook function from the React library creates a state variable in a functional
component. It takes an initial value as an argument and returns an array with two
elements: the current state value and a function to update the state value. In this code, the
useState hook is used to create a loggedUser state variable and its associated updater
function.

● createContext

This is a function from the React library that creates a new context object, which can be
used to share state or other data between components in a React application. In this code,
the createContext function creates a new context object called AuthDetails.

● AuthInfo

This custom React component uses the useEffect, useState, and createContext hooks to
manage the user authentication state in the application. It takes a children prop as input, a
special prop representing any child elements of the component.
Inside the AuthInfo component, the useEffect hook is used to listen for changes in the user
authentication status using the onAuthStateChanged function from the Firebase
authentication library. When the authentication state changes, the setLoggedUser function
updates the loggedUser state variable with the current user object logged into the console.
The return statement in the useEffect hook includes a clean-up function that removes the
listener to prevent memory leaks.
The AuthDetails.The provider component wraps the children elements and passes the
loggedUser value to any child components that need it using the value prop. The
AuthDetails.Provider component is exported along with the AuthDetails context object, so
that other components in the application can use the loggedUser value in the AuthDetails
context.

5.4. MessageDetails Component

Functions used:
● createContext

This function from the React library creates a new context object, which can be used to
share state or other data between components in a React application. In this code, the
createContext function creates a new context object called MessageDetails.

● useContext



12

This hook function from the React library allows a functional component to consume a
context object and access the data that a parent component has provided. In this code, the
useContext hook is used to access the loggedUser value from the AuthDetails context using
the AuthDetails context object.

● useReducer

This hook function from the React library allows a functional component to manage state
using a reducer function. It takes two arguments: a reducer function that takes the current
state and an action as input and returns a new state, and an initial state value. In this code,
the useReducer hook creates a state variable called state and its associated updater
function dispatch. It uses the messageReducer function as the reducer and the
INITIAL_STATE object as the initial state.

● MessageInfo

This custom React component uses the createContext, useContext, and useReducer hooks
to manage the state of a message object in the application. It takes a children prop as
input, a special prop representing any child elements of the component.
Inside the MessageInfo component, the useContext hook is used to access the loggedUser
value from the AuthDetails context object, which determines the order of the user IDs in
the messageId property of the message object.
The messageReducer function is a reducer function that takes the current state and an
action as input and returns a new state based on the action type. In this code, the
messageReducer function updates the user and messageId properties of the state object
based on the CHANGE_USER action type.
The MessageDetails.Provider component is used to wrap the children elements, pass the
data, and dispatch values to any child components that need them using the value prop.
The MessageDetails.Provider component is exported along with the MessageDetails
context object so that other components in the application can use the data and dispatch
values in the MessageDetails context.

5.5. AddChild Component

Functions Used:

● useState()

This is a hook provided by React that allows us to declare a state variable and update it. It
takes the initial value of the state variable as an argument. It returns an array containing
two values - the current value of the state variable and a function to update the state
variable.



13

● buildSearchArray(searchTerm)

This function takes a string argument searchTerm and returns an array of substrings of
searchTerm. Concatenating characters of searchTerm creates the substrings from the
beginning. For example, if searchTerm is "John Doe", the returned array would be ["J", "Jo",
"Joh", "John", "D", "Do", "Doe"].

● handleSubmit(event)

This function is called when the form is submitted. It prevents the default behaviour of the
form (i.e. refreshing the page) and then creates a new child object with the input data from
the form. It then adds this child object to the Firebase Firestore database using the
addDoc() function. Finally, it updates the childId field of the child object with the docRef.id
value and updates the state variables to clear the form inputs and display the docRef.id
value.

● AddChild()

This main functional component renders the form for adding a new child. It uses the
useState() hook to declare state variables for each input field in the form. It also uses the
buildSearchArray() and handleSubmit() functions. The JSX code defines the form layout and
includes a submit button that calls the handleSubmit() function when clicked.

5.6. ChildDetails Component

Functions Used:

● useContext(AuthDetails)

This hook provided by React allows us to access the values of the context object. In this
component, we use the AuthDetails context object to access the loggedUser value.

● useState()

This is a hook provided by React that allows us to declare a state variable and update it. It
takes the initial value of the state variable as an argument. It returns an array containing
two values - the current value of the state variable and a function to update the state
variable.

● getCurrentFormattedDate()

This function returns the current date in a formatted string. The format is "DD/MM/YYYY".

● copyDailyReviews()

This function is called when the "Copy Review" button is clicked. It filters the dailyReviews
array of the child object to get the reviews that were added today (i.e. reviews with the



14

current date). It then maps over this filtered array to create a string containing each
review's details. The string is then copied to the clipboard using the
navigator.clipboard.writeText() method. If the copy is successful, a popup message is
displayed using the setShowCopyPopup() function.

● ChildDetails({child, removeChild})

This is the main functional component that displays the details of a child. It takes two props
- child, which is an object containing the child's details, and removeChild, which is a
function called when the "Remove" button is clicked. The JSX code defines the card layout
that displays the child's details, including the daily reviews. It also includes buttons to add a
new review, copy the daily reviews, update the child's details, and remove the child. The
getCurrentFormattedDate() and copyDailyReviews() functions are used in this component.
The useContext() hook also accesses the loggedUser value from the AuthDetails context
object.

5.7. DailyReview Component

Functions Used:

● useState

This hook function provided by React allows us to define state variables in functional
components. It takes an initial value as its argument and returns an array containing the
current state value and a function to update it.

● useParams

This hook function provided by the react-router-dom library allows us to access the
parameters passed in the URL.

● useNavigate

This hook function provided by the react-router-dom library allows us to programmatically
navigate to different routes.

● useContext

This hook function provided by React allows us to consume data from a context created
using the createContext function.

● useEffect

This hook function provided by React allows us to perform side effects in functional
components. It takes a function as its argument and runs it after the component is
rendered.

● doc



15

This function is provided by the Firestore library that creates a reference to a document in
the database.

● updateDoc

This function is provided by the Firestore library that updates a document in the database.

● arrayUnion

This function provided by the Firestore library allows us to add an element to an array in
the database without overwriting the existing elements.

● getDoc

This function provided by the Firestore library retrieves a document from the database.

6. References

[1] Firebase authentication (no date) Google. Google. Available at:
https://firebase.google.com/docs/auth (Accessed: January 16, 2023).

[2] Firestore | Firebase (no date) Google. Google. Available at:
https://firebase.google.com/docs/firestore (Accessed: January 16, 2023).

[3] Cloud storage for Firebase (no date) Google. Google. Available at:
https://firebase.google.com/docs/storage (Accessed: January 16, 2023).


